A microsatellite-based multilocus phylogeny of the Drosophila melanogaster species complex
نویسندگان
چکیده
Uncovering the genealogy of closely related species remains a major challenge for phylogenetic reconstruction. It is unlikely that the phylogeny of a single gene will represent the phylogeny of a species as a whole [1], but DNA sequence data across a large number of loci can be combined in order to obtain a consensus tree [2]. Long sequences are needed, however, to minimize the effect of (infrequent) base substitutions, and sufficient individuals must be sequenced per species to account for intraspecific polymorphisms, an overwhelming task using current DNA sequencing technology. By contrast, microsatellites are easy to type [3], allowing the analysis of many loci in multiple individuals. Despite their successful use in mapping [4,5], behavioural ecology [6] and population genetics [7], their usefulness for the phylogenetic reconstruction of closely related taxa has never been demonstrated, even though microsatellites are often conserved across species [8-10]. One drawback to microsatellite use is their high mutation rate (10(-4)-10(-2)), combined with an incomplete understanding of their mutation patterns. Many microsatellites are available for Drosophila melanogaster, and they are distributed throughout the genome [11]. Most can be amplified in the D. melanogaster species complex [12,13] and have low mutation rates [14, 15]. We show that microsatellite-specific distance measurements [16] correlate with other multilocus distances, such as those obtained from DNA-DNA hybridization data. Thus microsatellites may provide an ideal tool for building multilocus phylogenies. Our phylogenetic reconstruction of the D. melanogaster complex provides strong evidence that D. sechellia arose first, followed by a split between D. simulans and D. mauritiana.
منابع مشابه
Phylogeny of the Oriental Drosophila melanogaster species group: a multilocus reconstruction.
The melanogaster species group of Drosophila (subgenus Sophophora) has long been a favored model for evolutionary studies because of its morphological and ecological diversity and wide geographic distribution. However, phylogenetic relationships among species and subgroups within this lineage are not well understood. We reconstructed the phylogeny of 17 species representing 7 "oriental" species...
متن کاملAconitase and Developmental EndPointsasEarly IndicatorsofCellularToxicity Induced by Xenobiotics in Drosophila Melanogaster
Background: In this study, the toxicity of the different xenobiotics was tested on the fruit fly Drosophila melanogaster model system. Methods: Fly larvae were raised on food supplemented with xenobioticsat different concentrations (sodium nitroprusside (0.1-1.5 mM), S-nitrosoglutathione (0.5-4 mM), and potassium ferrocyanide (1 mM)). Emergence of flies, food intake by larvae, and pupation h...
متن کاملConcentration dependent effect of morphine, aspirin, capsaicin and chili pepper hydro alcoholic extract on thermal and chemical pain model in fruit fly (Drosophila melanogaster)
Introduction: Pain research using animal models is related to ethical concerns, so invertebrates and insects have been recommended by researchers. In the present study, the nociceptive and antinociceptive effects of capsaicin, aspirin, morphine and chili extract were examined using fruit fly (Drosophila melanogaster) as an alternative for rodent pain model. Methods: Stage 3 of larvae and ad...
متن کاملToxicological Evaluation of a New Lepidopteran Insecticide, Flubendiamide, in Non-Target Drosophila melanogaster Meigen (Diptera: Drosophilidae)
Background: Flubendiamide, comparatively a new pesticide designed to eradicate lepidopteran insect pests is known to have low risk to birds, mammals, fish, algae, honey bees, non-target arthropods, earthworms, soil macro- and micro-organisms, non-target plants as well as sewage treatment organisms; however, the risk assessment for aquatic invertebrates from metabolite could not be finalized wit...
متن کاملConservation of locus-specific microsatellite variability across species: a comparison of two Drosophila sibling species, D. melanogaster and D. simulans.
Fifteen microsatellite loci were studied in Drosophila melanogaster and Drosophila simulans, two closely related sibling species which split 2-3.5 MYA. Within-species variances in repeat number were found to differ up to 1,000-fold among individual microsatellite loci. A significant correlation of log variances between both species indicated a locus-specific mutation rate of microsatellites. He...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 8 شماره
صفحات -
تاریخ انتشار 1998